

Date: 12-11-2024

 Dept. No.

Max. : 100 Marks

Time: 09:00 am-12:00 pm

SECTION A - K1 (CO1)

Answer ALL the Questions		(10 x 1 = 10)							
1.	MCQ								
a)	Which of the following equation is an one-dimensional wave equation?								
	(i) $\frac{\partial^2 y}{\partial x^2} = a \frac{\partial^2 y}{\partial t^2}$	(ii) $\frac{\partial y}{\partial x} = a \frac{\partial^2 y}{\partial t^2}$	(iii) $\frac{\partial y}{\partial x} = a^2 \frac{\partial^2 y}{\partial x^2}$	(iv) $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$					
b)	In two-dimensional heat flow equation $\frac{\partial^2 u}{\partial t^2} = c^2 \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right]$, the term c^2 refers								
	(i) thermal conductivity	(ii) Specific heat	(iii) diffusivity	(iv) heat flow from lower to higher temperature.					
c)	Fourier sin transform of $\frac{1}{x}$ is								
	(i) $\frac{\pi}{2}$	(ii) $\frac{\sqrt{\pi}}{2}$	(iii) $\sqrt{\frac{\pi}{2}}$	(iv) $\sqrt{\frac{2}{\pi}}$					
d)	In Newton's forward interpolation formula the value of a_2 is given by								
	(i) $a_2 = \frac{1}{h^2} \nabla y_0$	(ii) $a_2 = \frac{1}{h} \nabla y_0$	(iii) $a_2 = \frac{1}{2!h^2} \nabla^2 y_0$	(iv) $a_2 = \frac{1}{h^2} \nabla^2 y_0$					
e)	Which of the following is correct for Trapezoidal rule?								
	(i) $h \dot{c}$	(ii) $\frac{h}{2} \dot{c}$	(iii) $\frac{h}{4} \dot{c}$	(iv) $\frac{h}{3} \dot{c}$					
2.	Fill in the blanks								
a)	Laplace equation in cylindrical co-ordinate system is								
b)	If the roots α and β of second order differential equation are real and distinct then the general solution is								
c)	Fourier sine transform is defined as								
d)	The word extrapolation is used to denote the process of finding the values of								
e)	Numerical integration process when applied to a function of a single variable, then it is known as								
	SECTION A - K2 (CO1)								
	Answer ALL the Questions								
3.	True or False								

a)	Partial differential equation can be formed either by eliminating arbitrary constants or functions
b)	The equation of heat-flow in polar coordinates for steady-state is $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial r^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$.
c)	The convolution of two function is defined as $f(x)*g(x) = \int_{-\infty}^{\infty} f(u)g(x-u)du$.
d)	The Newton's forward interpolation formula contain the term y_0 and the forward difference of y_0
e)	In Euler's method, the actual curve is approximated by a sequence of long straight line.

4.	Match the following
a)	Assumption in method of separation : for unequally spaced value of x
b)	$F_s[e^{-ax}] \quad : \frac{h}{3}[(y_0+y_n)+4(y_1+y_3+\dots+y_{n-1})+2(y_2+y_4+\dots+y_{n-2})]$
c)	$F[af_1(x)+bf_2(x)] \quad : u_x = \frac{\partial u}{\partial x}, u_y = \frac{\partial u}{\partial y}$
d)	Lagrange's interpolation formula $: \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{isx} [af_1(x)+bf_2(x)] dx$
e)	Simpson's one-third rule $: \frac{1}{3} \frac{s}{a^2+s^2}$

SECTION B - K3 (CO2)

Answer any TWO of the following. **(2 x 10 = 20)**

5.	By method of separation of variables solve the partial differential equation $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$
6.	Find the Fourier sine transform of $f(x) = \frac{e^{-ax}}{x}$
7.	Using the method of least squares, fit the curve $y = ax^2 + \frac{b}{x}$ to the following data X: 1 2 3 4 Y: -1.51 0.99 3.88 7.66
8.	Evaluate the integral $\int_0^1 \frac{x^2}{1+x^3} dx$ using Simpson's 1/3rd rule. Compare the error with exact value.

SECTION C – K4 (CO3)

Answer any TWO of the following. **(2 x 10 = 20)**

9.	Solve $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = x^2 + xy + y^2$
10.	Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary condition $u(x,0) = 3\sin n\pi x$. $u(0,t) = u(l,t) = 0$ where $0 < x < l$.
11.	Apply Lagrange's formula to calculate $f(3)$ from the following data: X: 0 1 2 5 Y: 2 3 12 147
12.	Using improved Euler method find y at $x = 0, 0.1$ and 0.2 given $\frac{dy}{dx} = y - \frac{2x}{y}$, $y(0) = 1$.

SECTION D – K5 (CO4)

Answer any ONE of the following. **(1 x 20 = 20)**

13.	Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in a rectangle in the xy -plane with $u(x,0) = 0$, $u(x,b) = 0$, $u(0,y) = 0$, and $u(a,y) = f(y)$ parallel to y axis
-----	---

14. Find the positive root of $x^4 - x = 10$ correct to three decimal places using Newton-Raphson method.

SECTION E – K6 (CO5)

Answer any ONE of the following

(1 x 20 = 20)

15. Find Fourier cosine transform of $\frac{1}{1+x^2}$ and hence find Fourier sine transform of $\frac{x}{1+x^2}$.

16. The population of certain town is given below. Find the rate of growth of the population in 1931, 1941, 1951, 1961 and 1971.

Year X: 1931 1941 1951 1961 1971

Population in thousand Y: 40.62 60.80 79.95 103.56 132.65

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$